Last edited:
The kit shown here is a small, so-called Pixie QRP CW transceiver for 7.023 MHz. I bought it for a couple of euros at the DARC Verlag booth at HAM RADIO 2017 in Friedrichshafen. This is going to be a small homebrewing project for the coming weeks. Traditionally, homebrewing radio amateurs have been building small QRP CW transceivers like these into "Altoid" pepermint tins. I like traditions, so I've found this nice Amarelli tin for the Pixie to be placed in. Fed by a 9 V battery the Pixie will have a power output of about 0.8 Watts. Of course I'm not expecting this to be a state of the art transceiver, it's mainly a small experimental project to have some fun with.
I do not expect to make many QSOs with it, but it will be interesting to see if I can manage to be picked up by the Reverse Beacon Network (RBN). If I manage to get the Pixie to work properly, I am planning on someday doing a SOTA activation with it though.
However, the Pixie has no built in keyer, and there's no sidetone, which will make keying the transceiver a little awkward, and first will require some practicing with a straight key. I've also been thinking about buying a separate electronic keyer to use in conjuntion with the Pixie, so that I can use my Palm paddle key, but these are quite expensive. My latest plan is now to built a cheaper electronic morse keyer myself, using an Arduino microcontroller and per the building instructions provided here on the site of PA3HCM. I've never done something with Arduino, so this is an excellent opportunity to get some experience with it. Another advantage of the PA3HCM keyer is that it also generates a sidetone.
Another plan is to buy a crystal for 7.030 MHz and to use that one instead of the 7.023 MHz crystal. 7.030 MHz is the CW QRP "Centre of Activity" frequency.
Stay tuned!
See also:
http://www.gqrp.com/The_Sprat_Pixie_File.pdf
Just finished constructing one of these. Pretty simple and it worked the first time. Now to get a crystal in the general band!
ReplyDelete